Parallel Mesh Refinement of Higher Order Finite Elements for Electronic Structure Calculations
نویسندگان
چکیده
The finite element method is a promising method for electronic structure calculations. In this paper, a new parallel mesh refinement method for electronic structure calculations is presented. Some properties of the method are investigated to make it more efficient andmore convenient for implementation. Several practical issues such as distributed memory parallel computation, less tetrahedra prototypes, and the assignment of the mesh elements carried out independently in each sub-domain will be discussed. The numerical experiments on the periodic system, cluster and nano-tube are presented to demonstrate the effectiveness of the proposed method. AMS subject classifications: 81Q05, 65L50
منابع مشابه
Parallel Adaptive Mesh Refinement for Electronic Structure Calculations
We have applied structured adaptive mesh refinement techniques to the solution of the LDA equations for electronic structure calculations. Local spatial refinement concentrates memory resources and numerical effort where it is most needed, near the atomic centersand in regions of rapidly varying charge density. The structured grid representation enables us to employ efficient iterative solver t...
متن کاملCover interpolation functions and h-enrichment in finite element method
This paper presents a method to improve the generation of meshes and the accuracy of numerical solutions of elasticity problems, in which two techniques of h-refinement and enrichment are used by interpolation cover functions. Initially, regions which possess desired accuracy are detected. Mesh improvment is done through h-refinement for the elements existing in those regions. Total error of th...
متن کاملIntroduction to the Slide Modeling Method for the Efficient Solution of Heat Conduction Calculations
Determination of the maximum temperature and its location is the matter of the greatest importance in many technological and scientific engineering applications. In terms of numerical calculations of the heat conduction equation by using uniform mesh increments in space, large computational cost is sometimes countered. However, adaptive grid refinement method could be computationally efficient ...
متن کاملFast Finite Element Method Using Multi-Step Mesh Process
This paper introduces a new method for accelerating current sluggish FEM and improving memory demand in FEM problems with high node resolution or bulky structures. Like most of the numerical methods, FEM results to a matrix equation which normally has huge dimension. Breaking the main matrix equation into several smaller size matrices, the solving procedure can be accelerated. For implementing ...
متن کاملIsogeometric Analysis of the Cahn-Hilliard phase-field model
The Cahn-Hilliard equation involves fourth-order spatial derivatives. Finite element solutions are not common because primal variational formulations of fourthorder operators are well defined and integrable only if the finite element basis functions are piecewise smooth and globally C1-continuous. There are a very limited number of two-dimensional finite elements possessing C1-continuity applic...
متن کامل